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Subdiffusive Quantum Transport for 3D Hamiltonians
with Absolutely Continuous Spectra

J. Bellissard1 and H. Schulz-Baldes2
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We exhibit a class of Hamiltonians in dimension D�3, describing a quantum
particle in an aperiodic medium with absolutely continuous spectrum and sub-
diffusive behavior. The diffusion exponent, which characterizes the time growth
of the mean square displacement, can be chosen slightly bigger than Guarneri's
lower bound. These models are built out of 1D Hamiltonians with well-under-
stood spectral and transport properties.
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Quantum diffusion in aperiodic media is slowed down due to destructive
interference phenomena. The most prominent example is the Anderson
model describing an electron in a disordered potential. In low dimension or
for a strong disordered potential, the motion is completely localized and
the spectrum is known to be pure-point (see 1 and references therein). On
the other hand, scaling arguments and numerical calculations(18) show that,
in three dimensions and at low disorder, the motion is diffusive while the
spectrum is expected to be absolutely continuous. 3D quasicrystals are
other interesting systems in which the spectral measures are probably
absolutely continuous whereas numerics show that the quantum transport
is even subdiffusive.(25) This subdiffusive motion plays a crucial role in
qualitative explanations of the experimental results on electronic transport
in quasicrystals.(29, 19, 26)

The purpose of this note is to exhibit an aperiodic tight-binding
Hamiltonian in dimension D�3 with absolutely continuous spectrum, but
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subdiffusive quantum transport. It is constructed as a linear combination of
1D tight-binding Hamiltonians Hj, j=1...D, acting on l2(4) where 4=Z
or 4=N, as follows:

H'= :
D

j=1

' j1� } } } �H j � } } } �1 : l2(4_D) � l2(4_D) (1)

Here '=('1 ,..., 'D) # RD
+ . This simple construction is well-known. It is

similar to the labyrinth model introduced by Sire.(28) Recently it has also
been used by Simon.(27)

The 1D models Hj will be chosen as Jacobi matrices with self-similar
fractal spectra(5, 6, 9, 20, 10) for which the transport properties have recently
been analyzed rigorously.(10, 2) For the special case of certain limit-periodic
Julia matrices(5, 4, 6) defined below, we will show that for D=3 and almost
every ', the local density of states, namely the spectral measure of H', is
absolutely continuous while the quantum motion is subdiffusive with a
diffusion exponent only slightly larger than imposed by Guarneri's lower
bound.

These examples may look artificial. They certainly differ from real
quasicrystals. Nevertheless they constitute the first examples of homoge-
nous finite-dimensional Hamiltonians for which spectral and anomalous
transport properties can be controlled rigorously. A class of infinite-dimen-
sional Hamiltonians with absolutely continuous spectral measure and diffu-
sion exponents varying from 1 to 0 was previously constructed by Vidal,
Mosseri and Bellissard.(30) We further acknowledge that Last and Kiselev
recently studied another 3D Hamiltonian with absolutely continuous
spectrum and subdiffusive quantum transport.(17)

We first define the diffusion exponents of a Hamiltonian H acting on
a D-dimensional tightbinding Hilbert space l2(4_D). Let A(t) denote the
time evolution of a given observable A and let X9 be the position operators
on l2(4_D). For :>0 and � # l2(4_D) a state with compact support, we
set

;\
: (H, �)=lim\

T � �

log(�T
0 (�| |X9 |: (t) |�) dt�T )

log(T :)
(2)

where lim+ and lim& denote the superior and inferior limit respectively.
Note that an intermediate exponent between ;& and ;+ has also been
defined by using Mellin's transform.(26) By functional calculus |X9 (t)| :=
|X9 |: (t). Elementary inequalities further show that |X9 (t)| : in (2) can be
replaced by |X9 (t)&X9 |: without changing the diffusion exponents. The
(disorder or phase-averaged) diffusion exponent ;2 is of particular physical
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importance because it characterizes the low-temperature behavior of the
direct conductivity as given by Kubo's formula in the relaxation time
approximation.(26)

There are general relations between transport exponents and spectral
properties of the Hamiltonian. It is usually accepted that, the smoother the
spectral measures, the faster the wavepacket propagation, leading to large
diffusion exponents. Guarneri(8) and others(7, 16, 11) proved a general
inequality making this more quantitative:

;&
: (H, �)�

1
D

dimH(+), ;+
: (H, �)�

1
D

dimP(+), \:>0

Here dimH(+) and dimP(+) are respectively the Hausdorff and packing
dimension of the spectral measure + of H with respect to � defined to be the
+-essential supremum of respectively the lower and upper pointwise dimen-
sions d \

+ (E)=lim \
= � 0 log(+([E&=, E+=]))�log(=). Both the Hausdorff and

the packing dimension of + only depend on the measure class of +.(26, 12)

For an absolutely continuous measure +, one has dimH(+)=dimP(+)
=1.(26) Hence in dimension D=1, absolutely continuous spectrum implies
ballistic transport (;:=1), while in dimension D=3, absolutely con-
tinuous spectrum and subdiffusive motion (;:<1�2) may coexist. Here we
construct an example for this.

This lower bound has recently been improved(12, 3) using multifractal
dimensions defined by:

D\
+ (q)= lim

q � q$

1
q$&1

lim\

= � 0

log(� d+(E) +([E&=, E+=])q$&1

log(=)
, q # R (3)

Then one gets:

;\
: (H, �)�

1
D

D\
+ \ D

D+:+ , \:>0 (4)

Note that in several recent papers(9, 12, 3) the fact that ;\
: (H, �) be increas-

ing with : is called intermittency.
Let now � be a tensor product state of the form �=�1 � } } } ��D .

We observe that the diffusion exponents of a Hamiltonian H' of the form
(1) satisfy

;+
: (H ', �)= max

j=1 } } } D
;+

: (H j , �j) (5)
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This follows directly from (1), (2) and the following inequality

1
c

:
D

j=1

y:
j �\ :

D

j=1

yj+
:

�c :
D

j=1

y:
j

valid for any yj�0, j=1 } } } D, where c is a positive constant depending
only on D and :.

Let further +'j
j be the spectral measure of 'j Hj relative to �j where

'j>0. We get +'j
j (2)=+ j (2�'j) for all Borel subsets 2 of R where + j is the

spectral measure of H j . Then the spectral measure + of H' relative to � is
nothing but the convolution of the +'j

j 's. Due to the smoothening proper-
ties of the convolution, it is possible for H' to have absolutely continuous
spectrum even though each Hj has a singular one. This will be made more
explicit below.

We will choose the Hj 's among the 1D models already investigated
rigorously in refs. 10 and 2. These models exhibit anomalous transport and
have a singular continuous spectrum. Their construction by inverse theory
as Jacobi matrices with self-similar fractal spectrum is as follows. Let I 1

0

and I 1
1 be two disjoint closed intervals contained in a closed interval I0. Let

S be a smooth real function such that its restrictions S0, 1 : I 1
0, 1 � I0 are

bijective with smooth inverse and such that S(I 0"(I 1
0 _ I 1

1)) & I 0=<. The
inverse images S &N(I 0) consist of 2N intervals of generation N. A coding
_=(_i) i�1 with _i # [0, 1] permits to describe them through I N

_ =S &1
_1

b
} } } b S &1

_N
(I 0). Finally S is supposed to be expansive, namely we suppose

that there exist positive constants a<1 and b such that the lengths of I N
_

decrease faster than baN uniformly in _.
Let +0 be an S-invariant ergodic measure supported by J/R obtained

as the pull back of a shift-invariant ergodic measure on the code space.
Whenever +0 is a Gibbs measure, its generalized dimensions defined by
Eq. (3) coincide D+

+0
(q)=D&

+0
(q) and are analytic in q (see ref. 23 and ref-

erences therein). Furthermore, the measure +0 is exactly scaling, namely the
pointwise dimensions d+0

(E)=lim= � 0 log(+0([E&=, E+=]))�log(=) exist
+0 -almost surely and are +0 -almost surely equal to dimH(+0)=dimP(+0)=
D+0

(1).(23, 10)

Let (Pn)n�0 be the family of real orthonormal polynomials relative to
the Hilbert space L2(R, +0). They satisfy a three term recurrence relation:

EPn(E)=tn+1 Pn+1(E)+vnPn(E)+tnPn&1(E),

\n # N, P&1=0, P0=1

where t0=0, tn>0 for n�1 and vn # R. Equivalently, they define a tri-
diagonal selfadjoint matrix H0 acting on l2(N) by (n| H0 |n+1)=tn+1
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and (n| H0 |n) =vn . It is the Jacobi matrix with self-similar spectral
measure +0 . Hence, the position operator for such matrices is constructed
entirely from the spectral measure. It is thus expected that the diffusion
properties, in particular the diffusion exponents, can be derived entirely
from spectral properties. Actually, in refs. 10 and 2 upper bounds on the
diffusion exponents of H0 were given in purely spectral terms whenever the
restrictions S0, 1 are polynomials.

In this work, we first focus on the example of Julia matrices and will
then briefly comment on other cases below. A real Julia set is generated by
the mapping S(E)=E2&*, *>2. It satisfies all the above hypothesis. As
measure +0 , we choose a balanced Bernoulli measure, notably we suppose
the _j 's to be independent identically distributed random variables equal to
0 or 1 with equal probabilities. The corresponding Jacobi matrix H0 ,
also called a Julia matrix, obeys an exact renormalization group equation
leading to a recurrence relation for the tn 's and vn=0, so that the sequence
(tn)n�0 is limit-periodic.(5, 4, 6)

The results on quantum transport are the following. For a real Julia
matrix H0 , Mantica(20) has derived and checked numerically the following
relation (for �0=|0) the localized state at the origin):

;\
: (H0 , �0)=D+0

(1&:), :>0 (6)

In refs. 10 and 2 it has been proved rigorously that ;+
: (H0 , �0)�D+0

(1&:)
for : # (0, :c(*)] and some :c(*)>2. The general inequality (4) gives a
lower bound ;+

: (H0 , �0)�D+0
(1�(1+:)). These inequalities can be directly

transposed to any compactly supported �0 . Therefore, the transport
exponents of Julia matrices are determined only by the spectral measure.
In particular, the intermittency, namely the fact that : [ ;+

: (H0) is an
increasing curve, is due to the non-trivial thermodynamics of the spectral
measure.

Using (1) we now construct higher dimensional models with the same
transport properties. Their spectral properties are given through the follow-
ing theorem, a corollary of results obtained in ref. 13:

Theorem. Let +1 ,..., +D be exactly scaling Borel measures on R and
'1 ,..., 'D # R+ . Let +'j

j be the measure defined by +'j
j (2)=+ j ((1�' j) 2) for

all Borel sets 2/R. Then their convolution product satisfies

dimH(+'1
1 V } } } V +'D

D )=min {1, :
D

j=1

dimH(+ j)= (7)
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for Lebesgue almost all '1 ,..., 'D . Moreover, if �D
j=1 dimH(+j)>1, then

+'1
1 V } } } V +'D

D is absolutely continuous for Lebesgue almost all '1 ,..., 'D .

On the right hand side of (7), dimH(+j) can be replaced by dimH(+'j
j )

because the mapping E [ E�'j is bi-Lipschitz and therefore does not
change the Hausdorff dimension and pointwise dimensions (that is,
d+j

'j ('jE)=d+j
(E)). The theorem cannot be true for all '1 ,..., 'D because of

resonance phenomena: see ref. 14 for such an example. For the proof of the
theorem, one notes that +'1

1 V } } } V +'D
D is the image of the product measure

+1 � } } } �+D under the one-dimensional projection P' : RD � R given by
P'(E1 ,..., ED)=�D

j=1 'jEj where '=('1 ,..., 'D). Now it is shown in ref. 13
that, first of all, the Hausdorff dimension of a sum of exactly scaling
measures is given by the sum of the Hausdorff dimensions of the sum-
mands, and, second of all, that the Hausdorff dimension of the one-dimen-
sional projection P'(&) of a measure & on RD is equal to min[1, dimH(&)]
for Lebesgue almost all directions '. Actually ref. 13 only contains proofs
for the case D=2, but these proofs can be directly transposed to the finite-
dimensional case by using the results of ref. 22 generalizing those of ref. 21.
The second statement of the theorem follows similarly from ref. 13.

Let us use this result to construct the desired examples. Let +0 be an
exactly scaling measure on a self-similar fractal set J invariant under the
map S. The dilated measure +'

0 , ' # R+ , is supported on the set 'J which
is invariant under the map S' defined by S'(E)='S(E�'). As dilations are
bi-Lipschitz maps and thus leave Hausdorff dimensions invariant, it follows
from multifractal analysis that D+0

(q)=D+'
0
(q) for all q # R. Combining all

the above, we therefore obtain the following:

Theorem. Let +1 ,..., +D be balanced Bernoulli measures on real
Julia sets and H1 ,..., HD their Jacobi matrices. Set �=|0) � } } } � |0).
Then the Hamiltonian H' defined in (1) as well as its spectral measure +'

with respect to � satisfy for Lebesgue almost all '=('1 ,..., 'D) # RD
+ and all

:>0:

(i) dimH(+')=min[1, �D
j=1 dimH(+j)].

(ii) If �D
j=1 dimH(+j)>1, then +' is absolutely continuous.

(iii) ;+
: (H', �)�maxj=1 } } } D D+j

(1&:) and
;&

: (H ', �)�max j=1 } } } D D+j
(1�(1+:)).

Let us consider the concrete example of a Julia set for which
dimH(+)=D+(1)r1�3. This happens for *r16.5. The corresponding value
of D+(&1) is 0.3342 (these numbers are by courtesy of G. Mantica). Hence
the theorem guarantees the existence of a 3D model with absolutely con-
tinuous local density of states for which the diffusion exponent ;2(H) is
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only slightly bigger than imposed by Guarneri's lower bound ;2(H)�
1�D=1�3 (Eq. (4) gives a slightly better lower bound). We further dispose
of 3D models with absolutely continuous spectrum and a diffusion expo-
nent taking an arbitrary value in the interval [0.3342, 1].

Analogous results can be obtained for sums H' of other models con-
sidered in refs. 10 and 2. Examples are Bernoulli measures on uniform Cantor
sets generated by the mappings S(E)=|*E |&*+1, *>2. The spectral
properties of the corresponding H' can be analyzed just as above, but the
formulas for the upper bounds are more involved.(10) In absence of an exact
renormalization property, the asymptotic properties of the generalized
eigenfunctions certainly play an important role, (15, 20, 10) but a satisfactory
theory does not seem available yet.
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